Properties of the Genetic Code under Directional, Asymmetric Mutational Pressure
نویسندگان
چکیده
We have used the Monte Carlo method for simulating the evolution of protein coding sequences from the Borrelia burgdorferi genome under the directional mutational pressure, described by the nucleotide substitution matrix experimentally found for this genome. Since the mutational pressure is asymmetric – different for each of the two DNA strands, and the coding sequences are also asymmetric, the mutagenic effect depends on the topology of the coding sequence on the chromosome. While the direct effect of the directional mutational pressure on the codon usage is predictable, the effect on the amino-acid composition depends on the degeneracy of the genetic code, initial composition of the protein sequence and codon usage. Assuming additional degeneracy of information connected with the structure of amino-acids, we have found that the best strategy for the evolution of some genes in the B. burgdorferi genome is to change the mutational pressure by inversions, which corresponds to changing the substitution matrix to the mirror one. It mimics the behavior of a stock market player who can gain by investing only in two stock sets even if during that time both sets have lost.
منابع مشابه
Two New Non-AFR Criteria for Depicting Strength Differential Effect (SDE) in Anisotropic Sheet Metals
The issue of pressure sensitivity of anisotropic sheet metals is investigated with introducing two new non-AFR criteria which are called here linear and non-Linear pressure sensitive criteria. The yield and plastic potential functions of these criteria are calibrated with directional tensile/compressive yield stresses and directional tensile Lankford coefficients, respectively. To determine unk...
متن کاملDifferential Gene Survival under Asymmetric Directional Mutational Pressure
We have simulated, using Monte Carlo methods, the survival of prokaryotic genes under directional mutational pressure. We have found that the whole pool of genes located on the leading DNA strand differs from that located on the lagging DNA strand and from the subclass of genes coding for ribosomal proteins. The best strategy for most of the non-ribosomal genes is to change the direction of the...
متن کاملInfluence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms
The influence of nanofluid with different wave forms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The ex...
متن کاملOptimisation of Asymmetric Mutational Pressure and Selection Pressure Around the Universal Genetic Code
One of hypotheses explaining the origin of the genetic code assumes that its evolution has minimised the deleterious effects of mutations in coded proteins. To estimate the level of such optimization, we calculated optimal codes for genes located on differently replicating DNA strands separately assuming the rate of amino acid substitutions in proteins as a measure of code’s susceptibility to e...
متن کاملMutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003